Éléments de géométrie différentielle et introduction au calcul variationnel

Cours 2: Pullbacks, pushforwards, dérivées de Lie et formes différentielles

B. Kolev

Laboratoire de Mécanique Paris-Saclay (LMPS) Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS

Quiberon, 8-13 septembre 2025

LIGNES DIRECTRICES

- Pullback et pushforward
- 2 Dérivée de Lie
- Formes différentielles
- 4 Formes volumes
- 5 La dérivée extérieure
- 6 Intégration des formes différentielles

LIGNES DIRECTRICES

- Pullback et pushforward
- Dérivée de Lie
- Formes différentielles
- 4 Formes volumes
- La dérivée extérieure
- 6 Intégration des formes différentielles

PULL-BACK D'UNE FONCTION

• Le concept fondamental qui permet de passer des variables matérielles $(M=\Omega_0)$ aux variables spatiales $(N=\Omega)$ et inversement, sont les opérations pull-back $(tiré\ en\ arrière)$ et push-forward $(tiré\ en\ avant)$, définies à partir d'une transformation

$$\varphi\colon \Omega_0 \longrightarrow \Omega.$$

 Pour les fonctions numériques (ou vectorielles), ces opérations sont définies par

$$\varphi^*f = f \circ \varphi$$
 (pull-back), f définie sur Ω , φ^*f sur Ω_0 , $\varphi_*g = g \circ \varphi^{-1}$ (push-forward), g définie sur Ω_0 , φ_*g sur Ω .

• Les opérations de pull-back et push-forward sont inverses l'une de l'autre :

$$\varphi^* = (\varphi_*)^{-1} = (\varphi^{-1})_*.$$

PULL-BACK D'UN CHAMP DE VECTEURS

• Pour les champs de vecteurs, on se concentrera sur le diagramme suivant

$$T\Omega_0 \xrightarrow{\mathbf{F} = T\varphi} T\Omega$$

$$U \left(\begin{array}{c} \downarrow \pi & \downarrow \pi \\ \downarrow \sigma & \downarrow \pi \end{array} \right) \mathbf{u}$$

$$\Omega_0 \xrightarrow{\varphi} \Omega$$

• On obtient ainsi avec $u \in \text{Vect}(\Omega)$ et $U \in \text{Vect}(\Omega_0)$:

$$\varphi^* \mathbf{u} = \mathbf{F}^{-1}.(\mathbf{u} \circ \varphi) \in \text{Vect}(\Omega_0)$$
 (pull-back),
 $\varphi_* \mathbf{U} = \mathbf{F}.(\mathbf{U} \circ \varphi^{-1}) \in \text{Vect}(\Omega)$ (push-forward).

PULL-BACK D'UN CHAMP DE COVECTEURS

• Pour les champs de covecteurs, le diagramme suivant nous aide à obtenir les formules qui suivent.

$$T^{\star}\Omega_{0} \stackrel{\mathbf{F}^{\star}}{\longleftarrow} T^{\star}\Omega$$

$$\alpha \left(\begin{array}{c} \pi & & \pi \\ 0 & & \pi \end{array} \right) \beta$$

$$\Omega_{0} \stackrel{\varphi}{\longrightarrow} \Omega$$

où \mathbf{F}^{\star} , la transposée de F, s'écrit en composantes : $(F^{\star})_{I}^{j} = F_{I}^{j}$.

Pull-back :

$$\varphi^*\beta := \mathbf{F}^*(\beta \circ \varphi) = (\beta \circ \varphi)\mathbf{F},$$

• Push-forward:

$$\varphi_*\alpha = \mathbf{F}^{-\star}(\alpha \circ \varphi^{-1}) = (\alpha \circ \varphi^{-1})\mathbf{F}^{-1}.$$

PULL-BACK DE CHAMPS DE TENSEURS D'ORDRE 2

• Pour un champ $\varepsilon = (\varepsilon_{ij})$ de tenseurs d'ordre 2 covariants, on obtient

$$\varphi^* \varepsilon = \mathbf{F}^* (\varepsilon \circ \varphi) \, \mathbf{F}$$

• Pour un champ $\sigma = (\sigma^{ij})$ de tenseurs d'ordre 2 contravariants, on obtient

$$\varphi^* \boldsymbol{\sigma} = \mathbf{F}^{-1} (\boldsymbol{\sigma} \circ \varphi^{-1}) \mathbf{F}^{-\star}$$

• Pour un champ $L = (L^i_j)$ de tenseurs d'ordre 2 mixtes, on obtient

$$\varphi^* L = \mathbf{F}^{-1}(L \circ \varphi) \, \mathbf{F}$$

GÉNÉRALISATION

- Une fois comprises ces règles du jeu, les opérations pull-back et push-forward s'étendent facilement aux champs de tenseurs d'ordre plus élevé.
- Ces opérations commutent avec la contraction entre tenseurs covariants et contravariants, par exemple :

$$(\varphi_*\alpha) \cdot (\varphi_*\mathbf{X}) = \varphi_*(\alpha \cdot \mathbf{X}),$$

$$(\varphi^*\boldsymbol{\sigma}) : (\varphi^*\boldsymbol{\varepsilon}) = \varphi^*(\boldsymbol{\sigma} : \boldsymbol{\varepsilon}),$$

$$\operatorname{tr}(\varphi_*L) = \varphi_*(\operatorname{tr} L).$$

Exemple en mécanique

Le tenseur de Mandel s'écrit $M=\Sigma C$ où $C=\varphi^*(\mathbf{q})$ et le tenseur de Cauchy-Green droit et $\Sigma=\varphi^*(\tau)$, le deuxième Piola-Kirchhoff et $\tau=\sigma/\rho$, le tenseur de Kirchhoff. On a

$$M = \varphi^*(\boldsymbol{\tau})\varphi^*(\mathbf{q}) = \varphi^*(\boldsymbol{\tau}\mathbf{q}) = \varphi^*(\widehat{\boldsymbol{\tau}}).$$

LIGNES DIRECTRICES

- Pullback et pushforward
- 2 Dérivée de Lie
- Formes différentielles
- 4 Formes volumes
- La dérivée extérieure
- 6 Intégration des formes différentielles

La dérivée de Lie, version infinitésimale du pullback

Définition (Dérivée de Lie d'un champ de tenseurs t)

Soit **X** un champ de vecteurs sur M, $\varphi(t)$ son flot, et **t** un champ de tenseurs sur M. La dérivée de Lie de **t** dans la direction **X** est définie par

$$\mathcal{L}_{\mathbf{X}}\mathbf{t} := \left. \frac{\partial}{\partial t} \right|_{t=0} \varphi(t)^*\mathbf{t}$$

Remarque

 \mathcal{L}_X t est un champ de tenseurs de même type que t.

En $t \neq 0$, on a

$$\frac{\partial}{\partial t}\varphi(t)^*\mathbf{t} = \varphi(t)^* \mathcal{L}_{\mathbf{X}}\mathbf{t}$$

CALCULS PRATIQUES

• La dérivée de Lie d'une fonction s'écrit

$$\mathcal{L}_{\mathbf{X}}f = df.\mathbf{X}$$

• La dérivée de Lie d'un champ de vecteurs Y s'écrit

$$\mathcal{L}_X\,Y=[X,Y]$$

où [X, Y] est le crochet de Lie des champs X et Y.

• Connaissant la dérivée de Lie d'une fonction et d'un champ de vecteurs, les autres dérivées de Lie se calculent à l'aide de la règle de Leibniz

$$(fg)' = f'g + fg',$$

appliquée aux contractions entre tenseurs.

EXEMPLES

• Cas d'un champ de covecteurs :

$$(\mathcal{L}_{\mathbf{X}} \alpha)(\mathbf{Y}) = \mathcal{L}_{\mathbf{X}}(\alpha(\mathbf{Y})) - \alpha(\mathcal{L}_{\mathbf{X}} \mathbf{Y}) = d(\alpha(\mathbf{Y})).\mathbf{X} - \alpha([\mathbf{X}, \mathbf{Y}]),$$

ou en composantes:

$$(\mathcal{L}_{\mathbf{X}} \alpha)_i = (\mathcal{L}_{\mathbf{X}} \alpha) (\partial_{x^i}) = X^k (\partial_k \alpha_i) + \alpha_k (\partial_i X^k),$$

• Cas d'un champ de tenseurs d'ordre 2 covariants :

$$(\mathcal{L}_{\mathbf{X}}\,\varepsilon)(\mathbf{Y},\mathbf{Z}) = d(\varepsilon(\mathbf{Y},\mathbf{Z})).\mathbf{X} - \varepsilon([\mathbf{X},\mathbf{Y}],\mathbf{Z}) - \varepsilon(\mathbf{Y},[\mathbf{X},\mathbf{Z}]),$$

ou en composantes:

$$(\mathcal{L}_{\mathbf{X}}\,\boldsymbol{\varepsilon})_{ij} = (\mathcal{L}_{\mathbf{X}}\,\alpha)\,(\partial_i,\partial_j) = X^k(\partial_k\varepsilon_{ij}) + \varepsilon_{kj}(\partial_iX^k) + \varepsilon_{ik}(\partial_jX^k).$$

Taux de déformation

Dans le cas particulier de la métrique euclidienne $\mathbf{q}=(\delta_{ij})$, on a

$$(\mathcal{L}_{\mathbf{X}}\,\mathbf{q})_{ij}=(\partial_i X^j)+(\partial_j X^i),$$

qui correspond à 2d lorsque X = u est la vitesse eulerienne.

FORMULE MAGIQUE

 La dérivée de Lie s'étend aux champs de vecteurs u(t) dépendant du temps et permet de formuler le résultat suivant, très utile en mécanique des milieux continus.

Lemme (Formule magique)

Soit $\varphi(t)$ un chemin de difféomorphismes (ou de plongements) et soit

$$\boldsymbol{u}(t) = (\partial_t \varphi) \circ \varphi^{-1}$$

sa vitesse eulerienne. Soit ${\bf t}$ un champ de tenseurs, dépendant éventuellement du temps. Alors

$$\partial_t(\varphi^*\mathbf{t}) = \varphi^* \left(\partial_t \mathbf{t} + \mathcal{L}_{\boldsymbol{u}} \, \mathbf{t}\right)$$

LIGNES DIRECTRICES

- Pullback et pushforward
- 2 Dérivée de Lie
- Formes différentielles
- 4 Formes volumes
- 5 La dérivée extérieure
- 6 Intégration des formes différentielles

Qu'est-ce qu'une forme différentielle?

Définition

Une forme différentielle ω de degré p sur une variété M de dimension n est un champ de tenseurs covariants d'ordre p alternés, ce qui veut dire

$$\omega_{i_1\cdots i_l\cdots i_k\cdots i_p}=-\omega_{i_1\cdots i_k\cdots i_l\cdots i_p}.$$

- Une 1-forme sur \mathbb{R}^3 s'écrit : $\omega = \omega_1 dx + \omega_2 dy + \omega_3 dz$
- Une 2-forme sur \mathbb{R}^3 s'écrit : $\omega = \omega_{12} dx \wedge dy + \omega_{13} dx \wedge dz + \omega_{23} dy \wedge dz$
- Une 3-forme sur \mathbb{R}^3 s'écrit : $\omega = \omega_{123} \, \mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z$

où l'opération ∧ est le produit tensoriel alterné, appelé également produit extérieur.

LE PRODUIT EXTÉRIEUR

Définition

Le produit extérieur (ou produit tensoriel alterné) est défini par

$$dx^1 \wedge dx^2 \wedge \cdots \wedge dx^n := \sum_{\sigma \in \mathfrak{S}_n} \operatorname{sgn}(\sigma) \, dx^{\sigma(1)} \otimes dx^{\sigma(2)} \otimes \cdots \otimes dx^{\sigma(n)},$$

où \mathfrak{S}_n est le groupe des permutations de n éléments et $\mathrm{sgn}(\sigma)$ est le signe de la permutation σ ,

Exemples

$$dx^{1} \wedge dx^{2} = dx^{1} \otimes dx^{2} - dx^{2} \otimes dx^{1}$$

$$dx^{1} \wedge dx^{2} \wedge dx^{3} = dx^{1} \otimes dx^{2} \otimes dx^{3} + dx^{3} \otimes dx^{1} \otimes dx^{2} + dx^{2} \otimes dx^{1} \otimes dx^{3}$$

$$- dx^{1} \otimes dx^{3} \otimes dx^{2} - dx^{2} \otimes dx^{1} \otimes dx^{3} - dx^{3} \otimes dx^{2} \otimes dx^{1}.$$

LE PRODUIT INTÉRIEUR

Le produit intérieur d'un champ de vecteur \mathbf{X} et d'une forme différentielle ω est obtenu par contraction à gauche.

Définition

Soit X un champ de vecteur X sur M. On définit l'opérateur linéaire

$$i_X \colon \Omega^p(M) \to \Omega^{p-1}(M)$$

par

$$i_{\mathbf{X}}\omega := \mathbf{X} \cdot \omega, \qquad (i_{\mathbf{X}}\omega)_{i_{1}\cdots i_{p-1}} = X^{k}\omega_{ki_{1}\cdots i_{p-1}}.$$

Remarque

Si p = 0, c'est à dire si $\omega = f$ est une fonction, alors $i_X \omega := 0$.

APPLICATION EN PHYSIQUE : LE TENSEUR DE FARADAY

FORMULATION MODERNE DE L'ÉLECTROMAGNÉTISME

- Le champ électrique $\mathbf{E} = E^i \partial_{x^i}$ et l'induction magnétique $\mathbf{B} = B^i \partial_{x^i}$ n'ont pas de sens intrinsèque!
- Ils correspondent en fait aux composantes d'une 2-forme sur l'espace-temps, le tenseur de Faraday, qui s'écrit

$$\mathbf{F} = (F_{\mu\nu}) = \begin{pmatrix} 0 & E^1 & E^2 & E^3 \\ -E^1 & 0 & -B^3 & B^2 \\ -E^2 & B^3 & 0 & -B^1 \\ -E^3 & -B^2 & B^1 & 0 \end{pmatrix}$$

• Dans la base (dt, dx^1, dx^2, dx^3) , F s'écrit

$$\mathbf{F} = E^1 dt \wedge dx^1 + E^2 dt \wedge dx^2 + E^3 dt \wedge dx^3$$
$$-B^1 dx^2 \wedge dx^3 + B^2 dx^1 \wedge dx^3 - B^3 dx^1 \wedge dx^2.$$

LIGNES DIRECTRICES

- Pullback et pushforward
- 2 Dérivée de Lie
- Formes différentielles
- 4 Formes volumes
- La dérivée extérieure
- 6 Intégration des formes différentielles

FORMES VOLUMES

Définition

Une forme volume sur une variété différentielle M de dimension n est une forme différentielle de degré n qui ne s'annule en aucun point.

• Exemple : une forme volume sur \mathbb{R}^2 s'écrit

$$\omega = f dx^1 \wedge dx^2$$
, où $f(x^1, x^2) \neq 0$.

ullet Exemple : une forme volume sur \mathbb{R}^3 s'écrit

$$\omega = f dx^1 \wedge dx^2 \wedge dx^3$$
, où $f(x^1, x^2, x^3) \neq 0$.

ORIENTABILITÉ

Définition (Variétés orientables)

Une variété lisse M est orientable si il existe un atlas A de M dont tous les changements de cartes ont un jacobien positif.

Théorème

Orientation Une variété différentielle M est orientable ssi elle possède une forme volume ω .

Orientation d'une variété orientable

Étant donné deux formes volumes ω et ω' , il existe une fonction $f \in C^\infty(M)$ qui ne s'annule pas telle que $\omega' = f\omega$. Si M est connexe, il y a deux possibilités : soit f est strictement positive, soit f est strictement négative. On dit que ω et ω' définissent la même orientation si f>0. C'est une relation d'équivalence. Le choix d'une orientation sur M revient à choisir une de ces deux classe d'équivalence. On dit alors que la variété M est orientée.

LE VOLUME RIEMANNIEN

Sur toute variété riemannienne orientable (M, g), il existe une unique forme volume notée vol_g qui est caractérisée par le fait qu'elle vaut 1 sur toute base orthonormée directe. En coordonnées, elle s'écrit

$$\operatorname{vol}_g = \sqrt{\det(g_{ij})} \, \mathrm{d} x^1 \wedge \ldots \wedge \mathrm{d} x^n.$$

• Exemple : Si $\mathbf{q} = (\delta_{ij})$ est le produit scalaire euclidien standard sur \mathbb{R}^3 dans un système de coordonnées orthogonales directe (x^i) , alors

$$\operatorname{vol}_{\mathbf{q}} = \mathrm{d} x^1 \wedge \mathrm{d} x^2 \wedge \mathrm{d} x^3.$$

• Exemple : Si Ω est une sous-variété à bord de \mathbb{R}^3 , le volume riemannien sur son bord $\partial\Omega$ (élément d'aire) s'écrit

$$d\mathbf{a} = i_n \operatorname{vol}_{\mathbf{q}} = \mathbf{n} \cdot \operatorname{vol}_{\mathbf{q}}, \quad \mathbf{n} : \text{normale sortante}$$

• Exemple : si Σ est une surface à bord de \mathbb{R}^3 , avec élément d'aire da, alors le volume riemannien sur son bord $\partial \Sigma$ (élément de longueur) s'écrit

$$\mathrm{d}\boldsymbol{\ell}=i_{n}\,\mathrm{d}\mathbf{a}=n\cdot\mathrm{d}\mathbf{a},\qquad n: \text{normale sortante.}$$

APPLICATION EN MÉCANIQUE : LA FORMULE DE NANSON

• Elle sert à récrire, sur la configuration de référence Ω_0 , certaines conditions limites définies sur le bord de Ω et s'écrit

$$\varphi^* \big((\mathbf{X} \cdot \mathbf{n}) \, \mathrm{d} \mathbf{a} \big) = J \, \mathbf{F}_{\varphi}^{-1} (\mathbf{X} \circ \varphi) \cdot \mathbf{n}_0 \, \mathrm{d} \mathbf{a}_0,$$

où \mathbf{X} est un champ de vecteurs sur Ω , $\mathbf{F}_{\varphi} = T\varphi$ et $J = \det \mathbf{F}_{\varphi}$.

• Sa preuve est simple avec les notions introduites :

$$\varphi^* ((\mathbf{X} \cdot \mathbf{n}) \, d\mathbf{a}) = \varphi^* (i_{\mathbf{X}} \, \text{vol}_{\mathbf{q}})$$

$$= i_{\varphi^* \mathbf{X}} (\varphi^* \text{vol}_{\mathbf{q}})$$

$$= J \, i_{\varphi^* \mathbf{X}} \, \text{vol}_{\mathbf{q}}$$

$$= J \, (\varphi^* \mathbf{X} \cdot \mathbf{n}_0) \, d\mathbf{a}_0$$

$$= J \, \mathbf{F}_{\varphi}^{-1} (\mathbf{X} \circ \varphi) \cdot \mathbf{n}_0 \, d\mathbf{a}_0$$

LIGNES DIRECTRICES

- Pullback et pushforward
- 2 Dérivée de Lie
- Formes différentielles
- 4 Formes volumes
- 5 La dérivée extérieure
- 6 Intégration des formes différentielles

La dérivée extérieure

On note $\Omega^p(M)$ l'espace vectoriel des p-formes différentielles sur M et on remarquera que $\Omega^0(M) = \mathrm{C}^\infty(M)$.

Théorème (Formule de Cartan)

Il existe une application linéaire et une seule, appelée dérivée extérieure

$$d: \Omega^p(M) \to \Omega^{p+1}(M),$$

qui étend la différentielle d'une fonction et qui satisfait

$$\mathcal{L}_{\mathbf{X}} \omega = \mathrm{d}i_{\mathbf{X}}\omega + i_{\mathbf{X}}\mathrm{d}\omega, \qquad \omega \in \Omega^{p}(M), \ \mathbf{X} \in \mathrm{Vect}(M),$$

 $i_{\mathbf{X}}$ dénotant le produit intérieur et $\mathcal{L}_{\mathbf{X}}$, la dérivée de Lie.

EXPRESSION LOCALE DE LA DIFFÉRENTIELLE EXTÉRIEURE

• Cas d'une 0-forme (une fonction) :

$$(\mathrm{d}f)_i = \partial_i f.$$

• Cas d'une 1-forme $\omega = (\omega_i)$:

$$(\mathrm{d}\omega)_{ij}=\partial_i\omega_j-\partial_j\omega_i.$$

• Cas d'une 2-forme $\omega = (\omega_{ij})$:

$$(\mathrm{d}\omega)_{ijk} = \partial_i \omega_{jk} - \partial_j \omega_{ik} + \partial_k \omega_{ij}.$$

GRADIENTS, DIVERGENCES ET ROTATIONNELS

Soit $(\mathbb{R}^3, \mathbf{q})$ l'espace euclidien orienté par sa forme volume vol $_{\mathbf{q}}$.

• Le gradient d'une fonction f est le vecteur

$$\operatorname{grad} f := (df)^{\sharp} = \mathbf{q}^{-1} df, \qquad f \in \Omega^{0}(\mathbb{R}^{3}).$$

• Le rotationnel d'un champ de vecteur **X** est le champ de vecteurs défini implicitement par

$$\mathrm{d}\mathbf{X}^{\flat} = i_{\mathrm{rot}\,\mathbf{X}} \mathrm{vol}_{\mathbf{q}}, \qquad \mathbf{X}^{\flat} \in \Omega^{1}(\mathbb{R}^{3}).$$

• La divergence d'un champ de vecteur **X** est la fonction définie implicitement par

$$\mathcal{L}_{\mathbf{X}} \operatorname{vol}_{\mathbf{q}} = \operatorname{d} i_{\mathbf{X}} \operatorname{vol}_{\mathbf{q}} = (\operatorname{div} \mathbf{X}) \operatorname{vol}_{\mathbf{q}}, \qquad i_{\mathbf{X}} \operatorname{vol}_{\mathbf{q}} \in \Omega^{2}(\mathbb{R}^{3}).$$

FORMULATION INTRINSÈQUE DES ÉQUATIONS DE MAXWELL

• Les deux premières équations de Maxwell

$$\operatorname{rot} \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0, \qquad \operatorname{div} \mathbf{B} = 0,$$

se reformulent sous la forme d'une unique équation : $d\mathbf{F} = 0$ où

$$\mathbf{F} = \mathrm{d}t \wedge (\mathbf{q}\mathbf{E}) - i_{\mathbf{B}}\mathrm{vol}_{\mathbf{q}}$$
 (tenseur de Faraday)

Les deux autres

$$\operatorname{div} \mathbf{D} = \rho, \qquad \operatorname{rot} \mathbf{H} - \frac{\partial \mathbf{D}}{\partial t} = \mathbf{j},$$

se récrivent : $\mathbf{d}^{\star}\mathbf{G} = \mathbf{J}$, où $\mathbf{J} = (\rho_{e}, \mathbf{j})$, $\mathbf{G} = (G^{\mu\nu})$ est défini par

 $\mathbf{G}^{\flat} = c^2 dt \wedge (\mathbf{q}\mathbf{D}) - i_{\mathbf{H}} \text{vol}_{\mathbf{q}}$ (tenseur de déplacement diélectrique),

et d^* (la co-différentielle) est l'adjoint formel de d.

Propriété fondamentale de la dérivée extérieure

Théorème

La dérivée extérieure satisfait

$$d \circ d = 0$$

Les relations $\operatorname{rot} \operatorname{grad} f = 0$ et $\operatorname{div} \operatorname{rot} \mathbf{X} = 0$ sont des conséquences de

$$d \circ d = 0$$
.

$$\Omega^0(U) {\overset{\operatorname{grad}}{\longrightarrow}} \Omega^1(U) {\overset{\operatorname{rot}}{\longrightarrow}} \Omega^2(U) {\overset{\operatorname{div}}{\longrightarrow}} \Omega^3(U),$$

LEMME DE POINCARÉ

- Une forme différentielle $\alpha \in \Omega^p(M)$ est fermée si $d\alpha = 0$.
- Elle est exacte si $\alpha = d\beta$ où $\beta \in \Omega^{p-1}(M)$.
- Une forme exacte est fermée mais la réciproque n'est pas vraie en général. Le lemme de Poincaré assure toutefois que la réciproque est vraie localement.

Lemme (Poincaré)

Soit $U \subset \mathbb{R}^n$ un ouvert convexe. Si $\alpha \in \Omega^p(U)$ est fermée, alors elle est exacte.

La preuve du lemme de Poincaré est constructive. Elle est basée sur la définition explicite d'un opérateur linéaire $K:\Omega^{p+1}(U)\to\Omega^p(U)$, tel que

$$Kd + dK = id.$$

Solution explicite

Une primitive β de α est donnée par $\beta = K\alpha$ car

$$d\beta = d(K\alpha) = \alpha - K(d\alpha) = \alpha,$$

LIGNES DIRECTRICES

- Pullback et pushforward
- 2 Dérivée de Lie
- Formes différentielles
- 4 Formes volumes
- La dérivée extérieure
- 6 Intégration des formes différentielles

31/37

RAPPEL SUR LA NOTION D'INTÉGRALE

Définition (euristique)

Si $f: \mathbb{R}^n \to \mathbb{R}$ est une fonction continue, l'intégrale de f sur le domaine $\Omega \subset \mathbb{R}^n$ est définie comme la limite des approximations (sommes de Riemann)

$$\int_{\Omega} f \, dV = \sum_{i} \int_{\Delta_{i}} f \, dV \simeq \sum_{i} f(x_{i}) vol(\Delta_{i}),$$

où les Δ_i forment une « triangulation » de Ω en petits éléments et $x_i \in \Delta_i$.

Théorème (Formule du changement de variables)

Soit $\varphi:\Omega_0\to\Omega$ un difféomorphisme et $f:\Omega\to\mathbb{R}$, alors

$$\int_{\Omega} f \, dV = \int_{\Omega_0} (f \circ \varphi) J \, dV$$

 $où J = \det T\varphi = \det \mathbf{F}.$

INTÉGRALE D'UNE FORME ALTERNÉE

• Soit M une variété orientable de dimension n et ω , une forme différentielle alternée de degré n. On se ramène à l'intégrale dans \mathbb{R}^n en écrivant

$$\int_{\mathbf{M}} \omega := \sum_{i} \int_{\Delta_{i}} \omega = \sum_{i} \int_{\phi_{i}^{-1}(\Delta_{i})} \phi_{i}^{*} \omega$$

où ϕ_i est une carte locale qui couvre Δ_i .

Or

$$\phi_i^* \omega = f_i \, \mathrm{d} x^1 \wedge \cdots \wedge \mathrm{d} x^n$$

et on est ramené à la définition d'une intégrale dans \mathbb{R}^n , avec

$$dV = dx^1 \wedge \cdots \wedge dx^n$$
 (mesure de Lebesgue).

• On peut vérifier que cette définition est indépendante des cartes choisies, du fait de la formule de changement de variables.

FORMULE DU CHANGEMENT DE VARIABLE

VERSION INTRINSÈQUE

Théorème (Formule du changement de variables)

Soit $\varphi: M \to N$ un difféomorphisme et ω une n-forme alternée sur N (M et N étant de dimension n), alors

$$\int_{N} \omega = \int_{M=\varphi^{-1}(N)} \varphi^* \omega$$

Lien avec la formule classique

Si $\omega = f dx^1 \wedge \cdots \wedge dx^n$, alors

$$\varphi^*\omega = (f \circ \varphi)J\,\mathrm{d} x^1 \wedge \cdots \wedge \mathrm{d} x^n,$$

où
$$J = \det T\varphi = \det \left(\frac{\partial \varphi^i}{\partial x^j}\right)$$
.

APPLICATION: DÉRIVÉE TEMPORELLE D'UNE INTÉGRALE

En utilisant la formule magique : $\partial_t(\varphi^*\omega) = \varphi^*(\partial_t\omega + \mathcal{L}_{\boldsymbol{u}}\omega)$, on a :

$$\frac{d}{dt} \int_{\Omega} f \operatorname{vol}_{\mathbf{q}} = \frac{d}{dt} \int_{\Omega_{0} = \varphi^{-1}(\Omega)} \varphi^{*}(f \operatorname{vol}_{\mathbf{q}})$$

$$= \int_{\Omega_{0}} \partial_{t} \varphi^{*}(f \operatorname{vol}_{\mathbf{q}})$$

$$= \int_{\Omega_{0}} \varphi^{*} \Big(\partial_{t}(f \operatorname{vol}_{\mathbf{q}}) + \mathcal{L}_{\boldsymbol{u}}(f \operatorname{vol}_{\mathbf{q}}) \Big)$$

$$= \int_{\Omega} \partial_{t}(f \operatorname{vol}_{\mathbf{q}}) + \mathcal{L}_{\boldsymbol{u}}(f \operatorname{vol}_{\mathbf{q}})$$

$$= \int_{\Omega} (\partial_{t} f + \operatorname{div}(f \boldsymbol{u})) \operatorname{vol}_{\mathbf{q}}$$

 $\operatorname{car} \mathcal{L}_{\boldsymbol{u}}(f \operatorname{vol}_{\mathbf{q}}) = \operatorname{d} i_{\boldsymbol{u}}(f \operatorname{vol}_{\mathbf{q}}) = \operatorname{d} i_{f\boldsymbol{u}} \operatorname{vol}_{\mathbf{q}} = \operatorname{div}(f\boldsymbol{u}) \operatorname{vol}_{\mathbf{q}}.$

FORMULE DE STOKES

Le théorème de Stokes généralise le théorème fondamental de l'intégration

$$\int_{a}^{b} f'(x) \, \mathrm{d}x = f(b) - f(a),$$

si f est une fonction C^1 sur l'intervalle [a, b].

Théorème (Théorème de Stokes)

Soit M une variété différentielle orientée de dimension n, et ω une (n-1)-forme différentielle à support compact sur M de classe \mathbb{C}^{∞} , alors

$$\int_M \mathrm{d}\omega = \int_{\partial M} j^*\omega,$$

où d désigne la dérivée extérieure, ∂M le bord de M (éventuellement vide), muni de l'orientation sortante, et

$$j \colon \partial M \to M$$

est l'inclusion canonique.

CAS PARTICULIERS DE LA FORMULE DE STOKES

• La formule de Green–Riemann (*D* domaine plan)

$$\int_{\partial D} (P \, \mathrm{d}x + Q \, \mathrm{d}y) = \int_{D} (\partial_{x} Q - \partial_{y} P) \, \mathrm{d}x \wedge \mathrm{d}y,$$

avec $\omega = P dx + Q dy$ et donc $d\omega = (\partial_x Q - \partial_y P) dx \wedge dy$.

• La formule d'Ostrogradski (Ω domaine 3D)

$$\int_{\Omega} \operatorname{div}(\mathbf{X}) \operatorname{vol}_{\mathbf{q}} = \int_{\partial \Omega} (\mathbf{X} \cdot \mathbf{n}) d\mathbf{a}$$

avec $\omega = i_{\mathbf{X}} \operatorname{vol}_{\mathbf{q}}$ et donc $d\omega = (\operatorname{div} \mathbf{X}) \operatorname{vol}_{\mathbf{q}}$.

• La formules de Stokes-Ampère (Σ surface à bord)

$$\int_{\Sigma} (\operatorname{rot} \mathbf{X} \cdot \mathbf{n}) \, d\mathbf{a} = \int_{\partial \Sigma} (\mathbf{X} \cdot \boldsymbol{\tau}) \, d\boldsymbol{\ell}$$

avec $\omega = \mathbf{X}^{\flat}$ et donc $d\omega = i_{\text{rot } \mathbf{X}} \text{vol}_{\mathbf{q}} = (\text{rot } \mathbf{X} \cdot \mathbf{n}) d\mathbf{a}$.